国策(校对)第1105部分在线阅读

字体大小: | | 上一章 / 章节目录 / 下一章 / 返回书籍页面 / 当前阅读进度1105/1195

  接到战略反击命令后,这位名叫谢尔盖的上校营长立即按时间优先程序给仅存的3个排下达了反击命令。所谓的时间优先程序,就是用最短的时间把导弹发射出去,不要去管导弹能不能打中目标。当然,在这种情况下,导弹攻击的肯定是大城市、工业中心、军事基地等面目标,而不是加固了的点目标,对精度的要求并不是很高,在攻击上海这种特大城市的时候,就算偏差了上千米,也不会对攻击结果造成太大影响。可以说,以当时的情况,共和国天军的动能拦截卫星还在俄罗斯上空,而动能弹药完成攻击只需要2分钟,如果3辆发射车精确定位,导致其行踪暴露,因为弹道导弹的上升飞行阶段有几十秒,所以就算能够赶在动能弹药落下前把导弹发射出去,也不见得能让导弹飞到共和国上空,甚至有可能使刚刚升空的导弹因故障坠落,后果肯定难以设想。
  当然,不管有多么幸运,还是多么机智,3枚导弹升空后,共和国天军就拉响了警报。
  早在战略防御系统问世之前,战略警戒卫星就问世了,而且是核大国的必备利器。说简单点,战略警戒卫星就是专门用来监视敌国本土的广域侦察卫星,一般配备了可见光、红外线与紫外线三种不同的摄像机,也就是分别工作在这三个波段的被动探测仪,只要敌人的导弹升空,就能立即探测到导弹尾焰产生的辐射信号,并且拉响警报。当然,现代战略警戒卫星还具备了定位功能,并且通过卫星数据链接入战略防御系统,即在发出警报的时候,已经将目标的位置信息发送给了战略防御系统。如此一来,根本不需要人来操控,战略防御系统的中央计算机就将自动控制导弹发射区域上空的拦截卫星,对升空的导弹、以及导弹投射的弹头进行拦截。
  正是如此,3枚导弹升空后大约20秒,刚刚离开对流层、进入平流层,3束高能激光就划破苍穹,分别落在了3枚导弹的弹头上。准确地说,是笼罩住了3枚导弹的弹头,并且迅速向弹头下方的燃料舱段移去。
  随着激光束照在燃料舱段上,率先升空的那枚SS-48立即凌空爆炸,化为一团耀眼的火球,在刺目的光芒消散之后,燃烧着的躯壳坠向了广袤的西伯利亚平原。问题是,拦截还是来得稍微晚了一点,另外两枚导弹在被激光束照住燃料舱段之前就完成了体弹分离,在爆炸螺栓的作用下,燃料还没用尽的弹体就主动与被隔热层包裹得严严实实的弹头分开。虽然激光束也迅速做出调整,追上了下坠(实际上是上升速度有所减缓)的弹体,并且烧穿了弹体的外壳,使其内部的剩余燃料发生爆炸,但是此时弹体与弹头已经隔了数百米,而且两者的速度差达到了每秒上千米,所以弹体爆炸产生的冲击波并未对高速上升的弹头产生影响,反而对拦截卫星产生干扰,跟丢了正在做变轨飞行的弹头。
  战斗并未因此结束,配备了高能激器的拦截卫星跟丢目标之后,位于更高轨道上的第二种拦截卫星,也就是配备了粒子束武器的拦截卫星立即接到了中央计算机发来的信息,提前展开拦截行动。随着2枚弹头离开弹体爆炸产生的干扰区,两道速度高达每秒20万千米的高能中性粒子束就从距离地面大约3000千米高度上的2颗拦截卫星上射了下来。
  遭到粒子束照射之后,飞行弹道稍高一点的那枚弹头仅仅在无声无息的粒子束的照射下坚持了5秒钟,随着弹头表面的绝热层完全气化,高速飞行时与极为稀薄的空气摩擦产生的巨大热量立即点燃了弹头内部的易燃材料,最终引爆了姿态控制火箭发动机与再入大气层加速火箭发动机内的高能燃料,在猛烈的爆炸中,这枚携带了1颗55万吨级核弹头的导弹弹头在俄罗斯西伯利亚的鄂木斯克市上空化为了一点流星,弹头的残骸全都落在了俄罗斯境内。
  飞行高度较低的那枚弹头除了在粒子束的照射下使隔热层有所损伤之外,并没有受到太大的影响。虽然从理论上讲,由于隔热层受损,这枚弹头再次进入稠密大气层的时候,肯定会被烧毁,内部娇弱的核弹头也得完蛋,但是共和国国家战略防御系统并没有因此放过这枚同样携带了1颗55万吨级核弹头的导弹弹头。
  当最后一枚弹头脱离了粒子束的照射范围之后,已经有2枚配备了自导系统的动能拦截导弹从近地轨道上的动能拦截卫星上射了下来,正以每秒超过10千米的速度追上那枚还在向着共和国最大的城市飞去的导弹弹头。因为是切线追击,所以导弹弹头与拦截导弹的相对速度大约为每秒4千米,整个追击过程只持续了60秒。也就是说,导弹弹头在到达阿尔泰边疆区首府巴尔瑙尔上空的时候就被拦截导弹追上,并且先后被两枚拦截导弹击中,在其进入下降弹道之前就被击落了。
  到此,整个拦截才宣告结束,从导弹发射到弹头全部被击落,前后用时不到2分钟。
  从表面上看,这场极其短促的战斗算得上是有惊无险,可是从本质上讲,能够做到“有惊无险”的前提条件就是前期的大量付出,或者说是上千万亿元的巨额投入,以及数以万计的共和国军事科研人员在数十年内的艰苦努力。
  数十年之功,就体现在这短短2分钟之内。
  如果从本质上讲,这场拦截战斗肯定要比看上去的凶险得多。
  必须承认,俄罗斯在30年代初着手开发、在30年代末完成设计、在40年代初期开始批量生产与装备部队、号称世界上最后一种战略弹道导弹的SS-48确实是一种性能先进,而且威胁巨大的战略武器。
  首先,SS-48采用了速燃固体火箭发动机。正是如此,SS-48才能在发射后20秒就离开相对危险的对流层,并且以超过以往弹道导弹一倍的速度离开稠密大气层。缩短导弹在稠密大气层内的飞行时间,带来的最大好处就是提高了导弹的生存概率。要知道,如果导弹在稠密大气层内遭到拦截,别说会不会对本土构成威胁,只要一点点损伤,就能使导弹的燃料舱发生爆炸。第一枚被击落的导弹,也就是射向共和国首都(北京仍然是共和国名义上的首都)的那枚导弹就是因为攻击距离最近,最晚发射,没有赶在拦截开始前离开稠密大气层,导弹弹体还没有与弹头分离的时候就被激光束罩住,不但失去了离开大气层的机会,还使下面上万平方千米的区域受到污染。
  当然,仅仅只有速燃固体火箭发动机算不了什么,只有选择合适的弹道,将系统的性能发挥出来,才算得上是真正出色的弹道导弹。
  这就是SS-48的另外一个强项,即在攻击不同目标的时候,可以根据目标远近,自动选择最合适的弹道。要自导,以往的弹道导弹,只有固定的弹道,而攻击不同的目标,由抛洒弹头的时间决定。可想而知,采用固定弹道的导弹肯定更容易遭到拦截。别的不说,在采用固定弹道的时候,肯定得以最大射程来确定弹道高度,因为弹道高低决定了射程远近,而在以最大射程的情况下,弹道高度自然最高。也就是说,导弹的飞行时间相对较长,而且需要在外层空间飞行,这等于给了对方拦截系统下手的绝佳机会。灵活选择弹道之后,不但使导弹的飞行线路更难测算,还能大幅度缩短飞行时间,缩短外层空间的飞行距离,从而大幅度提高导弹的生存能力。
  不得不提到一点,即粒子束武器在大气层内的衰减作用。
  众所周知,从能量的角度来看,激光属于纯能量武器,即所发射的高能激光束本身并没有质量(准确的说是静止质量),完全依靠光子携带的能量来摧毁目标。粒子束武器则是准能量武器,即发射的高能激光束实际上是一些以接近光速的速度飞行的基本粒子,具有质量,通过基本粒子携带的动能来摧毁目标。正是如此,在大气层内,粒子束武器的衰减速度远远超过了激光武器,哪怕是中性粒子束武器。原因很简单,高速飞行的基本粒子在大气层内会与气体分子碰撞,从而改变方向或者完全耗散,对邻近的其他基本粒子产生影响,从而大大削弱了粒子束的能量。
  正是如此,粒子束武器只适合在外层空间使用。
  这也是为什么那枚弹道较高、飞向广州的弹头被粒子束摧毁,而那枚弹道较低、飞往上海的弹头却只损失了一些隔热涂层的原因。当然,关键还是对最大射程为12000千米的SS-48来说,在攻击5700千米外的上海、以及7200千米外的广州时,根本没有必要采用较高的飞行弹道,甚至可以在采用压低弹道、也就是将弹道高度控制在200千米以下,让弹头始终在稠密大气层顶端飞行的情况下,提前抛弃主发动机,让弹头在飞行末段依靠再入大气层加速火箭发动机提供的额外推力来延长射程,从而达到提高弹头生存能力的目的。如果没有这项技术,那枚飞往上海的弹头肯定被粒子束武器击落了。
  从这两轮拦截看得出来,激光武器与粒子束武器绝对不是万能的。
  对激光武器来说,因为大气层存在折射与发射现象,所以只能攻击位于正下方一定区域范围内的目标,只要攻击角度超过了设计制,不但攻击效率将大打折扣,甚至有可能使攻击彻底失败。对粒子束武器来说,最大的问题就是前面提到的,大气层对粒子束产生的耗散效应,使其很难在大气层内使用。
  正是如此,在能量武器大行其道的时候,共和国的国家战略防御系统中,仍然有三分之一的拦截任务由动能武器、也就是飞行速度高达每秒10千米的动能拦截导弹承担,而且这些导弹筑起了天基拦截系统的最后一道防线。
  对拦截导弹来说,最重要的就是能不能赶在目标进入下降弹道前进行拦截。
  原因很简单,如果目标弹头进入了下降弹道,飞行速度很快就会突破每秒8千米,而且很快就会进入大气层,最重要的是,此时弹头肯定在共和国本土上空,即便拦截成功,具有强烈放射性的弹头碎片也会落在共和国的大地上,甚至落在城市里面,从而使拦截失去应有的价值。
  受此影响,粒子束武器的第一次拦截失败后,天基拦截系统就将发射拦截导弹。
  虽然这么做很有可能浪费宝贵的拦截导弹,但是比日让核弹头落到共和国本土,这点浪费根本算不了什么。
  这次拦截就充分说明了这个问题。
  如果拦截导弹再晚10秒发射,最后那枚导弹弹头就将进入共和国境内,即便能够将其击落,弹头碎片也会洒落在共和国的土地上,造成难以估量的后果。
  从上面的分析来看,针对这3枚导弹与弹头的拦截基本上可以用完美来形容。
  要知道,如果让SS-48的弹头进入了中段飞行弹道,也就是完成了初始阶段的加速与弹道调整之后,其弹头就会自动进入战斗模式,除了启动姿态控制发动机,进行变轨道机动之外,还会陆续洒出足以以假乱真的诱饵弹头,给拦截系统造成更大的负担,至少让共和国的国家战略防御系统不得不浪费更多的战斗力。
  更值得庆幸的是,那些在精确战略打击中幸免的俄军导弹发射车都不成规模。
  在拦截了第一批3枚导弹之后的近10分钟内,由有14辆幸存的导弹发射车按照总统下达的反击命令发射了SS-48战略弹道导弹。其中5辆按照标准程序发射,即在发射导弹之前进行了精确定位,结果导弹刚刚升空,精确打击的动能弹头就落了下来,5枚导弹均在猛烈的爆炸中灰飞烟灭。另外9枚导弹按照紧急程序发射,没有精确定位,且全部瞄准共和国的特大城市。当然,这9枚导弹的结局也差不多,因为共和国的国家战略防御系统能够一次拦截数千个目标,所以就算在启用不分在轨拦截卫星的情况下,也能比较轻松的将9枚导弹拦截下来,不会让俄罗斯战略火箭兵的反击得逞。
  事实上,对付10多枚战略弹道导弹,即便没有天基拦截系统,仅依靠空基与地基拦截系统也能手到擒来。要知道,早在20多年前,共和国的空基激光拦截系统就在印度战争中成功拦截了印度的弹道导弹。如果再往前推,在30年前的日本战争中,共和国的空基与海基拦截系统也成功拦截过日本的弹道导弹。
  实事求是的讲,真正对共和国构成威胁的,还是那几十架俄军战略轰炸机!
第四十一章
毁天灭地
  如果说拦截弹道导弹是各国战略防御系统的看家本领,那么对付巡航导弹就算得上是世界性难题。
  与拦截弹道导弹相比,拦截巡航导弹的最大问题不在拦截,而在发现。
  相对而言,巡航导弹除了更加隐蔽、也就是难以被探测到之外,其他方面均远不如弹道导弹。正是出色的隐蔽性、即低可探测性,使巡航导弹获得了一席之地,并且在战场上发扬光大。
  当然,巡航导弹不是一成不变,而是随着技术在不断发展进步。
  如果按照飞行速度划分的话,直到本世纪初,巡航导弹仍然以亚音速为主,比如美国的BGM-109“战斧”系列、俄罗斯的Kh-55系列(因为与“战斧”非常相似,所以又被戏称为“战斧斯基”)、欧洲的“风暴阴影”等。这些亚音速巡航导弹无一例外的都采用了帖地飞行的方式来避开敌人的防空雷达,达到突防目的。
  以20世纪末与21世纪初的技术,不是无法制造超音速巡航导弹,而是超音速巡航导弹存在比较严重的性能缺陷。比如20世纪80年代,前苏联就研制出了飞行速度高达3.5马赫、射程超过550千米的P-700(SS-N-19“海难”)反舰导弹,并且将其装在包括“库兹涅佐夫”号航母、“基洛夫”级核动力巡洋舰(“彼得大帝”级)与“光荣”级巡洋舰在内的众多大型战舰上,成为美国航母的克星。问题是,这种发射质量超过7000千克(相当于“战斧”B型的9倍)、携带750千克战斗部(相当于“战斧”B型的1.8倍)的反舰导弹的最大射程只有550千米(仅为“战斧”B型的三分之一),很难承担起对地攻击的重任。如果要将其射程提高到1500千米,则需要将发射质量提高50%以上,既超过10吨。增大发射质量不但会使量产价格居高不下,还会使装备变得异常困难。比如美国的“提康德罗加”级巡洋舰最多可以携带122枚“战斧”,减半配置也能携带61枚,排水量相当的“光荣”级巡洋舰就只能携带16枚P-500(改进型携带的是P-700)。如果一种导弹大到连战舰携带都成困难,这种导弹也就没有多少实战价值了。与之相对应的,当时苏联的远程巡航导弹,即被称为“战斧斯基”的Kh-55也是亚音速巡航导弹,并不具备超音速飞行能力,才在不大幅度增加发射质量的情况下使射程达到了战略指标。
  将巡航导弹带入超音速时代的,正是日新月异的科学技术。
  大约在10年代末与20年代初,随着以电力革命为代表的新一轮技术革命到来,众多具有划时代意义的先进技术陆续问世,并且具备了实用价值,巡航导弹才进入了一个高速发展期。在这短短数年之内,除了率先向“高超音速”时代迈进的美国之外,早在超音速领域有所建树的俄罗斯、积极提升总体影响力的欧洲、以及发起电力革命的共和国,均在“高超音速”领域向美国发起挑战。
  巡航导弹领域的“速度竞赛”就此拉开序幕。
  同样以速度为准,“高超音速”时代可以分成几个阶段,即最大飞行速度为6到8马赫的入门阶段、最大飞行速度超过10马赫的初始阶段、最大飞行速度超过14马赫的成熟阶段与最大飞行速度达到20马赫的终极阶段,速度再快的话就脱离了巡航导弹的范畴,成为具备亚轨道飞行能力的新型导弹了。
  与亚音速时代相比,“高超音速”时代的最大区别就是,随着速度提升,导弹的飞行高度也在提升,而且提升得非常明显。比如入门阶段的高超音速巡航导弹的最大飞行高度一般控制在20千米左右,而终极阶段的高超因素巡航导弹的最大飞行高度超过60千米,部分甚至接近100千米。高度不断提升的原因非常简单,超快的飞行速度会弹体与空气摩擦产生巨大的热量,甚至有烧毁导弹的危险,只有不断提升飞行高度,离开稠密大气层,才能有效降低空气摩擦产生的热量。更重要的是,在各种新式探测系统面前,降低飞行高度对提高突防率的影响越来越小,不断提高的速度成为提高导弹在突防过程中的生存概率、提高突破敌人防空系统的主要手段。
  也许有人认为,在60千米高度上、以20马赫的速度飞行的巡航导弹已经偏离了巡航导弹的发展路线,即不再具有隐蔽性。
  事实上,与弹道导弹相比,高超音速巡航导弹的隐蔽性仍然非常出色。
  必须承认,在战术领域,高超音速巡航导弹确实很难有所作为。即便在某些特殊情况下,高超音速巡航导弹仍然具有不可替代的作用,比如在攻击大型航母战斗群的时候,高超音速巡航导弹仍然是最有效的弹药之一。可是在绝大部分时候,高超音速巡航导弹已经退出了战术大舞台,比如在中东战争中,高超音速巡航导弹在共和国军队消耗的弹药中所占的比例不到千分之三,在美国军队消耗的弹药中所占的比例也不到百分之一,远远低于远程炮弹与滑翔炸弹等战术弹药。当然,影响高超音速巡航导弹战术用途的众多因素中,缺乏隐蔽性只是其中之一,相对而言,高昂的价格才是主因。
  在战略领域,价格自然不是大问题。
  可以说,就算高超音速巡航导弹的价格远远高于其他战术弹药,也要比战略弹道导弹便宜得多,如果按照系统价格计算,肯定更加便宜。正是如此,在全面销毁核武器的大浪潮中,几个核大国不但没有让战略轰炸机提前退役,反而通过研制与改进高超音速巡航导弹来提升战略轰炸机的存在价值。
  在这波浪潮中,俄罗斯的表现并不差。
  早在20年代初,为了抵抗因生产严重过剩引发的经济危机与大萧条,俄罗斯就加大了军备投入,其中就有几个与高超音速巡航导弹有关的军事装备项目,最终代号KV-100、在P-700基础上改进开发的项目获得了俄罗斯海军与空军的青睐,并且一度进入工程阶段,如果不是质量严重超标,且减重设计成效微弱,恐怕俄罗斯将在20年代末成为自美国与共和国之后第三个研制与生产高超音速巡航导弹的国家。对俄罗斯军工来说,KV-100失败带来的出了惋惜之外,更多的是经验教训。正是在此基础上,俄罗斯空军于20年代末提出了下一代巡航导弹的性能指标,并且明确要求全新研制,而不是在原有产品上改进。经过10来年的艰苦努力之后,大约在30年代末,由俄罗斯红宝石设计局主导、天青石等几个设计局联合参与的KP-200型高超音速巡航导弹研制成功,并且获得了空军的量产订单,成为新一代Tu-200型战略轰炸机的标准武器(200这个编号也因此而来),俄罗斯也在法国之后,成为第四个掌握了高超音速巡航导弹的研制与生产技术的国家。在此之后,在俄罗斯空军的积极推动下,红宝石设计局又先后推出KP-200M等多种改进型号,以及KP-300、KP-400等新型导弹,其中在2053年问世的KP-500为俄罗斯最新一代高超音速巡航导弹,其最大飞行速度达到20马赫,这也是俄罗斯战略轰炸机的最新标准配备。
  此时,共和国天军的战略防御系统面对的正是数十架俄罗斯战略轰炸机从4处空域发射的300多枚KP-500型高超音速巡航导弹。
  也许有人会说,拦截弹道导弹的最佳方法都是拦截导弹、而不是拦截弹头,那么拦截巡航导弹的最佳方法就是对付轰炸机、而不是对付导弹。在此之前,共和国天军动能拦截卫星已经攻击了俄军的导弹发射车,为什么不用同样的方法对付俄军的战略轰炸机呢?不管怎么说,轰炸机飞得再快,也比不上动能导弹吧。
  这个观点的前面一半没有错,如果能够击落轰炸机,自然是再好不过的了。
  问题是,后面一半几乎没有实现的可能性。
  关键只有一点,即动能导弹能不能击中高速飞行的战略轰炸机。
  在攻击地面的导弹发射车的时候,动能导弹并没有直接集中发射车,而是用落地爆炸时产生的破坏效果来摧毁附近的导弹发射车。动能导弹从发射到落地大约飞行百来妙,而在这么短的时间内,最大速度不到每小时100千米的导弹发射车最多沿公路行驶3000米,所以只需要数枚动能导弹就能覆盖发射车所在的区域,确保摧毁发射车。在同样的时间内,巡航飞行速度在4马赫以上的战略轰炸机能够飞行上百千米,而动能导弹没有装填炸药,只有在落地或者击中目标的时候才会将动能释放出来,所以要想击中飞行中的轰炸机,至少需要数万枚导弹进行全方位覆盖。
  也许有人会说,应该给动能导弹装上制导系统。
  暂且不说开放式制导系统会不会受到干扰,在进入稠密大气层之后,飞行速度高达每秒数千千米的动能导弹与空气摩擦时将产生上万摄氏度的高温,而已知材料中,没有哪种能够承受如此高的温度,也就无法在导弹上安装探测窗口,无法让制导系统获取外界信息,制导也就无从谈起了。正是如此,所有用来攻击地面目标与大气层内悬浮目标的动能导弹都只有最简单的惯性制导系统,没有精确制导系统。
  除了攻击难度大之外,从外层空间精确跟踪高速飞行的轰炸机也很困难。
  可以说,要想击落俄罗斯的战略轰炸机,唯一的办法就是出动重型制空战斗机,在预警机与地面远程雷达的引导下发起攻击。
  毋庸置疑,战略轰炸机不会在边境线附近巡逻,俄罗斯也不缺乏战略纵深。
  比如在这次攻击中,4处导弹发射空域与共和国边境线的距离均在1500千米以上。隔着这么大段距离,就算制空战斗机有足够的航程,也很难突破俄罗斯本土防空网,并且在重重阻拦之下完成攻击行动。再说了,俄罗斯的战略轰炸机上又不是没有飞行员,遇到威胁之后,肯定会转向逃逸,不会给敌人的战斗机靠近的机会。
  重要的是,无法精确跟踪轰炸机,不等于无法探测到轰炸机,也不等于无法掌握轰炸机是否发射了导弹。随着探测距离在5000千米以上的远程战略警戒雷达进入无源时代,部署在共和国西北与东北地区的两部警戒雷达就能监视俄罗斯的西伯利亚与远东地区,并且对升空巡逻的轰炸机做大致定位。更重要的是,只要俄罗斯的轰炸机发射了导弹,远程警戒雷达就能探测到由此产生的电磁场扰动,从而发出警报。
  除了远程警戒雷达,太空中还有专门用来探测巡航导弹的战略预警卫星。
  总而言之,只要俄罗斯的战略轰炸机发射了巡航导弹,共和国天军的战略预警系统就会发出警报。
  当然,拦截导弹要比拦截轰炸机容易一点。
  在俄罗斯轰炸机发射了导弹之后,位于西伯利亚与远东地区上空的拦截卫星就进入了作战状态,而且所有配备了高能激光器的拦截卫星均在接到指令之后,自动攻击探测到的高危目标。
  问题是,有拦截,自然就有反拦截手段。
  与弹道导弹相比,巡航导弹没有速度优势,也不能提前抛掉主发动机。相对而言,巡航导弹的唯一优势就是能够得到运载平台、也就是战略轰炸机的支持。不管怎么说,巡航导弹是弹药,而不是武器平台,自主性非常有限,如果完全依靠巡航导弹自身的突防能力,肯定很那突破共和国的防御网,甚至不大可能进入共和国领空。
  针对这一情况,俄罗斯空军开发了一种非常具有创造性的对抗设备:虚像仪。
  当然,这不是俄罗斯空军的专利,共和国与美国空军也有类似的设备。
  说简单点,“虚像仪”就是一种专门用来欺骗拦截卫星的设备,工作原理很简单,即利用轰炸机与拖拽吊舱内的激光投影仪,在轰炸机周围制造出多过虚拟三维图像,让那些依靠可见光、红外线与紫外线来探测巡航导弹的拦截卫星将其当成巡航导弹,从而在这些毫无价值的虚像上浪费时间,让真正的巡航导弹获得突防机会。由此可见,虚像仪也不能保证巡航导弹能够百分之百的突防,只是大幅度提高了突防率。
  正是如此,拦截开始的时候,共和国天军的拦截卫星要面对的不是300多个目标,而是3000多个目标!

< 章节目录 >   < 上一章 >   当前阅读进度1105/1195   < 下一章 >   < 返回书籍页面 >